
Array/Object spread operator

Assume you have the following object:

const adrian = {

 fullName: 'Adrian Oprea',

 occupation: 'Software developer',

 age: 31,

 website: 'https://oprea.rocks'

};

Let’s assume you want to create a new object(person) with a different name and
website, but the same occupation and age.

You could do this by specifying only the properties you want and use the spread
operator for the rest, like below:

const bill = {

 ...adrian,

 fullName: 'Bill Gates',

 website: 'https://microsoft.com'

};

What the code above does, is to spread over the adrian object and get all its
properties, then overwrite the existing properties with the ones we're passing. It
copies the properties of the adrian object, over to the newly created object, and
then explicitly overwrites firstName and webSite. Think of this spread thing as
extracting all the individual properties one by one and transferring them to the
new object.

In this case, since we specified the fullName and website properties after the
spread operator kicked in, the JavaScript engine is smart enough to know that we
want to overwrite the original values of those properties that are coming from
the original object.

It’s a similar situation with arrays. Except that instead of spreading over keys and
values, the operator spreads indexes and values. Unlike object spread, where you
won’t have duplicate properties because that’s just how JavaScript objects work

(you can’t have an object with two fullName properties), with arrays you may
end up with duplicate values, if you plan to implement something similar to our
object example.

This means that the code below will result in you having an array with duplicate
elements.

const numbers1 = [1, 2, 3, 4, 5];

const numbers2 = [...numbers1, 1, 2, 6,7,8]; // this will be
[1, 2, 3, 4, 5, 1, 2, 6, 7, 8]

Think of it as a replacement for Array.prototype.concat.

Rest operator

When used within the signature of a function, where the function’s arguments
should be, either replacing the arguments completely or alongside the function’s
arguments, the three dots are also called the rest operator.

When it is used like that, the rest operator enables the developer to create
functions that can take an indefinite number of arguments, also called functions
of variable arity or variadic functions.

Here’s the simplest example of such a function. Let’s assume you want to create a
function that calculates the sum of all its arguments. Note that it’s not the sum of
two, three or four numbers but the sum of all the numbers the function would
receive as arguments.

Here is a naive implementation, using the rest operator

function sum(...numbers) {

 return numbers.reduce((accumulator, current) => {

 return accumulator += current;

 });

};

sum(1,2) // 3

sum(1,2,3,4,5) // 15

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/concat

The simplest explanation would be that the rest operator takes the arguments
that a function receives and dumps them into a real array that you could later
use.

You might argue that you can do this by requesting the user to pass an array of
numbers. That’s technically doable but poor UX for your API, since users expect
to call a sum function with plain numbers, not a list of numbers.

You might also argue that you could use the arguments array. That’s also true
but be careful, arguments is not a real array but an array-like object(an object
with a length property). It actually looks like this, for the first call of our sum
function, in the previous example:

{

 '0': 1,

 '1': 2,

 'length': 2

}

To manipulate this object and use array methods on it such as reduce, from my
previous example, you’d have to do
the Array.prototype.slice.call(arguments) thing.

Here's the previous function written using Array#slice:

function sum() {

 const args = Array.prototype.slice.call(arguments);

 return args.reduce((accumulator, current) => {

 return accumulator += current;

 });

}

sum(1,2) // 3

sum(1,2,3,4,5) // 15

This code works just like the spread version but with some major differences.
For starters, V8 compiler optimizations are not possible. passing

the arguments object to most functions will trigger a leak due to aliasing.
Arguments is an object and will be passed by reference and so V8 is unable to pin
down the type and shape of the elements inside the arguments object, since they
can be overwritten by the functions they are passed to.

The biggest problem is that I used to do it myself. It's just so simple to write. The
safer versions involved creating the array in-place, which was less elegant.

The bottom line is that the code above is just smartass code prone to confuse
your junior colleagues. Don't do it. You need to look no further than the Mozilla
Developer Network for options.

This should be everything you need to know to be productive with the
rest/spread operator in JavaScript.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

	Array/Object spread operator
	Rest operator

